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Optimized Group Sequential Study Designs for Tests of Genetic Linkage
and Association in Complex Diseases
Inke R. König,* Helmut Schäfer, Hans-Helge Müller, and Andreas Ziegler
Center for Methodology and Health Research, Institute of Medical Biometry and Epidemiology, Philipps-University of Marburg, Germany

The study of genetic linkage or association in complex traits requires large sample sizes, as the expected effect sizes
are small and extremely low significance levels need to be adopted. One possible way to reduce the numbers of
phenotypings and genotypings is the use of a sequential study design. Here, average sample sizes are decreased by
conducting interim analyses with the possibility to stop the investigation early if the result is significant. We applied
optimized group sequential study designs to the analysis of genetic linkage (one-sided mean test) and association
(two-sided transmission/disequilibrium test). For designs with two and three stages at overall significance levels of
.05 and .0001 and a power of .8, we calculated necessary sample sizes, time points, and critical boundaries for
interim and final analyses. Monte Carlo simulation analyses were performed to confirm the validity of the asymptotic
approximation. Furthermore, we calculated average sample sizes required under the null and alternative hypotheses
in the different study designs. It was shown that the application of a group sequential design led to a maximal
increase in sample size of 8% under the null hypothesis, compared with the fixed-sample design. This was contrasted
by savings of up to 20% in average sample sizes under the alternative hypothesis, depending on the applied design.
These savings affect the amounts of genotyping and phenotyping required for a study and therefore lead to a
significant decrease in cost and time.

Introduction

In recent years, analyses of genetic linkage or association
between a disease status and genetic markers have in-
creasingly been aimed at the localization of genes un-
derlying complex traits. The defining characteristic of
complex traits is that they are not inherited in a classical
Mendelian manner attributable to a single genetic locus.
Rather, they are typically determined by an interaction
of environmental and multiple genetic factors (Thomson
2001). One major difficulty of studying the genetic back-
ground of complex traits lies in the assumption that the
more genes there are involved, the smaller the contri-
bution of each to the overall genetic effect becomes
(Wright 1968). To reliably detect small effect sizes, large
samples need to be recruited, phenotyped, and genoty-
ped, leading to more-expensive study designs in terms
of time and money.

A second factor that contributes to an increase in
necessary sample sizes is the adoption of significance
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levels that are adjusted for genomewide multiple testing.
To illustrate the impact of this factor, we briefly sum-
marize the ongoing discussion on adequate significance
levels for genetic linkage and association studies. There-
after, we introduce the concept of sequential study de-
signs as a possible way to decrease the required sample
sizes for genetic epidemiological studies.

Adjustment of Significance Levels for Genetic Linkage
and Association Studies

A frequent strategy in linkage studies is screening of
large genomic regions or even the whole genome for
areas showing genetic linkage to the disease of interest.
In the extreme case, the locus of every gene could be
tested for linkage with disease status. If unadjusted sig-
nificance levels are then applied for every test, this ap-
proach leads to a tremendous rate of false-positive re-
sults. To guard against this, several strategies have been
suggested for the analysis of genetic linkage. Lander and
Kruglyak (1995) derived stringent adjusted testwise sig-
nificance levels for the analysis of affected sib pairs and
other study designs. However, their presented critical
values have been criticized on the grounds of unrealistic
specification of parameters; for example, an infinitely
dense marker map is assumed (Curtis 1996; Witte et al.
1996; Morton 1998). An alternative is to apply the tra-
ditional criterion for significance of a LOD score of 3.0,
first proposed by Morton (1955), approximating a test-
wise significance level of .0001. On the basis of the for-
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mulas by Lander and Kruglyak (1995), Ott (1999)
showed that this criterion results in a genomewide Bon-
ferroni-corrected significance level of ∼5% when a
marker spacing of 5 cM is used.

As Risch and Merikangas (1996) discussed, genome-
wide association studies based on several markers in
every gene—for instance, single-nucleotide polymor-
phisms (SNPs)—might be more powerful than genome-
wide linkage analyses; this approach also calls for an
adjustment of the testwise significance levels. As a con-
sequence, Risch and Merikangas (1996) have proposed
a correction of the significance level to be used in a single
test. They showed that, under the assumption of
100,000 genes in the human genome, with five diallelic
markers in each gene to be analyzed, a significance level
of gives a probability of 95% for no false-�85 # 10
positive results. Restricting the number of tests to be
performed to possible candidate genes only still requires
correcting the significance level. For example, Crowe
(1993) set the number of candidate genes to be analyzed
for psychiatric disorders to include all of the ∼20,000
genes expressed in the brain. Under the assumption of
five genes correctly associated with the disease, he cal-
culated a significance level of 10�5 for a genomewide
false-positive rate of 5%.

Any of these corrections are costly. Consider, for ex-
ample, performing the transmission/disequilibrium test
(TDT; Spielman et al. 1993) to test for genetic linkage
and association in a sample of affected individuals with
their parents. Applying the proposed level of ,�85 # 10
as opposed to the traditional .05, leads to an approxi-
mately fivefold increase in required sample sizes, re-
gardless of the underlying genetic model or effect. Even
the more liberal criterion of .0001 requires almost three
times the sample size as does the criterion of .05. Hence,
to apply study designs with these appropriate signifi-
cance levels, even greater sample sizes are necessary, thus
adding to study cost and time.

Sequential Designs in Genetic Epidemiological Studies

A possible way to reduce the average sample size and
thus facilitate investigations of genetic association and
linkage of complex diseases is the use of sequential study
designs. These have been developed mostly for appli-
cation in clinical trials, where the benefits both of re-
quiring as few probands (or even patients) as possible
and of providing new therapies as early as possible has
been most pronounced. In genetic linkage or association
studies, formal sequential study designs have been ap-
plied only seldom, although Morton (1955) suggested
the use of the sequential probability ratio test (Wald
1947) in introducing the traditional LOD statistic. Fur-
thermore, sequential procedures considering the special
needs of genetic epidemiological studies have been pro-

posed but lack correct realizations for practical purposes
(Böddeker and Ziegler 2001).

Nonetheless, two kinds of sequential proceedings
could be applied in genetic epidemiological studies. The
first strategy has been put forward, for instance, by Guo
and Elston (2000). Their approach involves screening
the whole genome by use of widely spaced genetic mark-
ers in the first stage. On the basis of statistical test results,
those markers that are significant according to a cal-
culated criterion are flanked by a certain number of ad-
ditional markers in the second stage. Hence, instead of
all available markers in the whole sample being geno-
typed at once, the marker density is sequentially in-
creased in promising genomic areas. This procedure
therefore leads to a significant decrease in the number
of genotypings necessary.

The second sequential strategy parallels applications
in clinical trials. Here, the basic idea is to analyze subsets
of probands or patients, in the extreme consisting of
single probands at a time. If, after the analysis of one
subset, the result is significant or definitely unpromising,
the trial is stopped. Otherwise, further subsets of indi-
viduals are recruited and included in the study until a
clear-cut result is obtained. Thus, in this procedure, the
sample size is increased sequentially, and multiple sig-
nificance tests are performed on increased samples. As
the number of probands in the study is decreased on
average, the amount of recruiting and phenotyping as
well as genotyping is reduced. Following this strategy,
Müller and Ziegler (1998) have proposed a group se-
quential design for the TDT. However, their calculations
were based on formulas given by Camp (1997) which
have been shown to be incorrect (Camp 1999; Knapp
1999).

Using the same approach as Müller and Ziegler
(1998), we focus in the present study on group sequential
designs for studies of genetic linkage and association.
For the analysis of genetic linkage, we apply the mean
test using affected sib pairs (ASPs), which is based on
the mean proportion of alleles shared identical by de-
scent (IBD) by ASPs. To study linkage and association
simultaneously, we apply the TDT (Spielman et al. 1993)
that has been one of the most commonly applied tests
over the last years. In its original form, this test examines
the transmission of a particular marker allele from het-
erozygous parents to their affected offspring. Here, re-
quiring large sample sizes is especially problematic, since
trios (i.e., parents and an affected offspring) must be
recruited and phenotyped.

The aim of the present study is to propose study de-
signs for genetic linkage and association studies that re-
duce the required average sample sizes. To this end, we
apply group sequential study designs to both the mean
test and the TDT. For a given number of interim anal-
yses, the proposed designs are optimized with respect to
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Table 1

Penetrance Functions and Genotypic Relative Risks

GRR FOR MOI

Multiplicative Additive Recessive Dominant

GRR1 g g 1 g

GRR2 g2 2g g g

average sample sizes under the alternative hypothesis
and are presented with necessary sample sizes, time
points, and critical values for interim and final analyses.
The validity of the asymptotic approximation is inves-
tigated by Monte Carlo simulation analyses. In addition,
the superiority of the sequential designs in comparison
with fixed-sample designs with regard to average sample
sizes will be presented.

Material and Methods

Mean Test for ASPs

To test for genetic linkage in ASPs, we consider the
mean statistic. Knapp (1994) showed that, in the case
of a multiplicative mode of inheritance (MOI), the mean
statistic leads to the test that is uniformly the most pow-
erful and that, in the case of any MOI, no other test
based on sib pairs could be uniformly the most powerful.
Multiplicative MOI refers to the inheritance model at a
single locus where having two disease alleles instead of
one squares the genotypic relative risk (GRR; see also
table 1). In the notation of Guo and Elston (2000), the
statistic of the mean test for NASP families of ASPs is
defined as

1� ˆ2N p �( )ASP 2

T p ,mean � ˆ ˆp(1 � p)

where is the proportion of alleles shared IBD by anp̂

ASP estimated from the data. The null hypothesis of no
linkage is rejected if , with za be-T (observed) � zmean 1�a

ing the a fractile of the standard normal distribution.
Given p, the expected proportion of alleles shared IBD,
linkage can be detected at a power of 1�b, with a fixed
total sample size (Guo and Elston 2000) of

( )p 1 � p
2( )N (fixed) � z � z . (1)ASP 1�a 1�b 212 p �( )2

TDT for Trios

To test for genetic association and linkage in trios, we
use the TDT, which examines the transmission of a par-
ticular marker allele from heterozygous parents to their
affected offspring (Spielman et al. 1993). In the follow-
ing, we use the notation and genetic models of Camp
(1997). Here, the investigated marker represents the dis-
ease locus itself, so that the recombination fraction (v)
is 0. We consider a disease allele A with a frequency p,
where . For genotypes comprising 0, 1, or 2q p 1 � p
A alleles, the probability of expressing the disease is
given by f0, f1, and f2, respectively. GRRi is given by the
increased chance that an individual with i disease alleles

expresses the disease, compared with an individual with
zero A alleles. For , they are defined asf ( 00

and . Using a penetrance pa-GRR p f /f GRR p f /f1 1 0 2 2 0

rameter g, the penetrances can be written in terms of
GRR1 and GRR2 for different MOI, as shown in table
1.

On the basis of calculations by Knapp (1999), we
define u as the probability that a parent is heterozygous
and transmits allele A to the affected offspring and q as
the probability that a parent is heterozygous and trans-
mits the other allele. Hence, the difference can beu � q

used to express the genetic effect, and we test the null
hypothesis that against the two-sided alter-u � q p 0
native hypothesis that .u � q ( 0

Camp (1999) has shown that, for the purpose of
power calculations, the classical TDT test statistic by
Spielman et al. (1993) can be approximated for Ntrio

families with a given difference of byˆ ˆu � q

� ˆ ˆN (u � q)trio
T p .TDT �4pq

The null hypothesis is rejected if FT (observed)F �TDT

.z(1�a 2)Z
The number of families necessary to achieve a power

of 1�b can now be calculated, given the GRRs and allele
frequencies, by

2

2 2a � � ( )z 2pq � z S � 2h u � q1� b( )[ ]2

N (fixed) � (2)trio 2 2( )2h u � q

with h being the probability that a patient of an affected
offspring is heterozygous and

2 2pqU(1� q) GRR � (1 � 2pq)GRR � (1 � p )I2 1

S p .2 2p GRR � 2pqGRR � q2 1

General Group Sequential Procedure

To adopt group sequential designs, we follow the pro-
cedure and notation introduced by Müller and Schäfer
(1999). We assume that data will be accumulated se-
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quentially until the total sample size NASP of ASPs or
Ntrio of trios is reached. The amount of information at
any point is given by the proportion t of families relative
to the total sample size and will be termed information
time t. Then the test statistics for the mean test and the
TDT can be expressed in terms of t with

1� ˆ2N p �ASP 2( )
�T (t) p tmean � ˆ ˆp(1 �p)

and

� ˆ ˆN (u � q)trio�( )T t p tTDT �4pq

and render the cumulative difference in transmission
rates up to time t.

For the time parameter t, varying between 0 and 1,
Tmean(t) and TTDT(t) define stochastic processes. They are
characterized by mean p and unit variance, where�d t

1�2N p �( )ASP 2

d p (3)mean � ( )p 1 � p

and

� ( )N u � qtrio

d p . (4)TDT �4pq

Asymptotically, and follow a� �t 7 T (t) t 7 T (t)mean TDT

Brownian motion with drift parameters dmean and dTDT.
It can be seen that these drift parameters are determined
mainly by the sample size and the genetic effects in terms
of p and u�q. For a one-sided mean test, we now test
the null hypothesis H0 ( ) against the alternatived � 0mean

H1 ( ); for a two-sided TDT, we test the nulld 1 0mean

hypothesis H0 ( ) against the alternative H1d p 0TDT

( ). Using formulas (3) and (4), a specific studyd ( 0TDT

design can be connected with the Brownian motion; this
allows classical sequential designs to be defined accord-
ing to the procedure of Müller and Schäfer (1999).

a-Spending Approach

To define a general sequential procedure, let m denote
the maximum number of analyses in the group sequen-
tial design, and are the informationt ,t , … ,t p 11 2 m

times at which analyses are carried out. The kth analysis
at information time is performed on the observed valuetk

of the test statistic T.(tk). If the number of analyses, m,
is fixed, a group sequential design can be determined
using the a-spending approach (Lan and DeMets 1983).
Here, the subsequent steps are followed:

First, a continuous function a(t) is defined, specifying
the type I–error rate that is spent until the information
time, t, with . Classical examples for spend-0 � a(t) � a

ing functions are , approx-a (t) p a 7 ln [1 � (e � 1) 7 t]P

imating the group sequential designs by Pocock (1977),
and

a�1F 1 �( )4

a (t) p 4 � 4F ,OF �t

where F denotes the standard normal distribution func-
tion, corresponding to the designs proposed by O’Brien
and Fleming (1979).

The second step includes fixing the testing times fortk

interim and final analyses. Given the respective function
and the maximal sample size N(max), the type I error
spent at the first analysis is then given by a(t1) where

.t p n /N(max)1 1

Third, the critical boundary for the first analysis, b1,
is calculated from , renderingP [T(t ) � b ] p a(t )d.p0 1 1 1

in the case of a one-sided test. The�1b p F [1 � a(t )]1 1

critical boundary for the second analysis, b2 at t p2

, is obtained from(n � n )/N P [T(t ) ! b ∩1 2 max d.p0 1 1

. To solve for the boundaryT(t ) � b ] p a(t ) � a(t )2 2 2 1

values, numerical integration methods, as described by
Armitage (1969), can be applied, using the independent
increments of a Brownian motion. Specification of crit-
ical boundaries is continued recursively until the overall
significance level is exhausted for under the nulld p 0
hypothesis. The calculation of critical boundaries for a
two-sided test is performed analogously.

In the fourth step, the power function can be calcu-
lated as a function of the drift parameter d for a given
design specified by and . The value of this functiont bk k

equals a at , and a characteristic parameterd p 0 d p
for the specific study design can be selected, in which∗d

the power equals . In the next section, it will be1 � b

shown that can be interpreted as a factor in the sam-∗2d

ple-size calculation, characterizing the study design in
terms of significance level, spending function, power, and
number and time points of interim analyses.

Hence, when the a-spending approach is used, local
critical boundaries for each analysis are determinedbk

together with d*, depending on the spending function
and . The result of these calculations is the fol-a(t ) tk k

lowing statistical test procedure. If the observed statistic
is greater than the critical boundary when theT (k) bmean k

one-sided mean test is performed, the null hypothesis is
rejected and the study stopped. Similarly, if the two-sided
TDT is performed, the observed statistic is com-T (k)TDT

pared with the critical values , and the null hypoth-�bk

esis is rejected if the observed statistic lies outside the
respective boundaries. Otherwise, the study is carried on
to the next stage until the last stage, m, in which the
null hypothesis is either accepted or rejected.
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Table 2

Optimized Group Sequential Designs

Overall a, Test, and ma t1 t2 t3 b1 b2 b3

.05:
One-sided:

1 1 … … 1.6449 … …
2 .5271 1 … 1.9587 1.7996 …
3 .3990 .6711 1 2.1266 2.0062 1.8502

Two-sided:
1 1 … … 1.9600 … …
2 .5523 1 … 2.2510 2.1043 …
3 .4257 .6890 1 2.4074 2.2974 2.1528

.0001:
One-sided:

1 1 … … 3.7190 … …
2 .6587 1 … 3.9220 3.8226 …
3 .5471 .7641 1 4.0326 3.9632 3.8607

Two-sided:
1 1 … … 3.8906 … …
2 .6671 1 … 4.0879 3.9908 …
3 .5568 .7697 1 4.1952 4.1281 4.0283

a , 2, and 3 denote fixed-sample, two-stage, and three-stage group se-m p 1
quential designs, repectively.

Table 3

Change in Average Sample Size in the Group Sequential Designs
over the Fixed-Sample Design

OVERALL a, TEST,
AND m

CHANGE IN AVERAGE SAMPLE SIZE

(%)
UNDER HYPOTHESIS

H0 H1

.05:
One-sided:

2 �6.47 �16.01
3 �8.37 �20.41

Two-sided:
2 �5.65 �15.21
3 �7.35 �16.90

.0001:
One-sided:

2 �3.68 �11.85
3 �5.02 �15.34

Two-sided:
2 �3.48 �11.61
3 �4.64 �15.03

Sample-Size Calculation

A prerequisite for using the a-spending approach and
for connecting a specific study design with the Brownian
motion is the determination of the maximum sample
size. Generally, the application of a group sequential
design leads to a slight increase in the maximum sample
size over the fixed-sample design given in formulas (1)
and (2). For a specific study, the required maximum sam-
ple size can be calculated using the formulasN(max)
given above for dmean and dTDT and the genetic model for
the specific study. It can be seen from formulas (3) and
(4) that the sample size N is proportional to . To cal-2d

culate the maximum sample size , equations (3)N(max)
and (4) are solved for N. For each sequential plan, N is
substituted with , d with the d* for the specificN(max)
study design, and p and u�q with the effects to be de-
tected. This transformation gives

( )p 1 � p
∗2N (max) p dASP mean 212 p �( )2

and

4pq∗2N (max) p d ,trio TDT 2( )u � q

which are the required maximum sample sizes to detect
the effects p and u�q with power 1�b. Note that, in the
fixed-sample design, d* equals , in the one-sidedz � z1�a 1�b

case, and , in the two-sided case. The kthz � z1�a 2 1�bZ
interim analysis will be performed with a sample size

and .N (k) p t 7 N (max) N (k) p t 7 N (max)ASP k ASP trio k trio

Optimization

Given only type I– and type II–error rates and the
maximal number of analyses, a vast number of group
sequential plans with different analysis times and critical
boundaries can be defined using the above calculations.
It is therefore required to select one design that is optimal
for the specific study to be conducted. As an optimiza-
tion criterion, we aim at finding a design that is optimal
with regard to average sample sizes. However, since the
average sample size depends on the unknown drift pa-
rameter, it cannot be specified in advance. To circumvent
this uncertainty, we wish to select the design that min-
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Table 4

Number of ASPs Nk for the One-Sided Mean Test for the kth Analysis in the Fixed-Sample Design and in Group
Sequential Designs with Two and Three Stages

RELATIVE

RISK

RATIOS

va

0 .05

Fixed Sample Two Stage Three Stage Fixed Sample Two Stage Three Stage

N1 N1 N2 N1 N2 N3 N1 N1 N2 N1 N2 N3

:l p 1.2S

lOp1.2 443 252 477 195 327 487 676 384 728 297 499 744
:l p 1.5S

lOp1.2 41 23 44 18 30 45 64 36 69 28 47 70
lOp1.5 109 62 117 48 80 120 167 95 180 74 123 184

:l p 2S

lOp1.2 13 7 14 6 9 14 21 12 22 9 15 23
lOp1.5 19 11 21 9 14 21 31 18 33 14 23 34
lOp2 47 27 50 21 35 52 73 42 78 32 54 80

:l p 3S

lOp1.2 5 3 5 3 4 6 9 5 10 4 7 10
lOp1.5 6 4 7 3 5 7 11 7 12 5 8 12
lOp2 10 6 10 5 7 11 16 9 17 7 12 18
lOp3 25 15 27 11 19 28 40 23 43 18 30 44

a v p recombination fraction between diallelic trait and fully informative marker locus. ; .a p .05 b p .2

imizes the average sample size under the alternative hy-
pothesis. This optimization problem can be solved by a
search algorithm in addition to an algorithm for the a-
spending method.

Here, increasing testing times and cu-t ! … ! t1 m�1

mulative a-spending values are chosen.a ! … ! a1 m�1

The critical boundaries and other characteristics of each
design can be calculated, where the average sample size
under the alternative hypothesis—the value of the op-
timization criterion—is of particular importance. Em-
ploying a dimensional search, a specific design2(m � 1)
in terms of testing times and a-spending values can be
selected that leads to the minimal value of the optimi-
zation criterion.

Using this approach, optimized study designs were
determined for the analysis of ASPs and trios with af-
fected offspring. For illustration, designs with maximally
two and three stages were calculated for an overall sig-
nificance level of .05 and a power of .8. Additionally,
designs with an overall significance level of .0001 were
determined. Since the mean test is performed as a one-
sided test and the TDT as a two-sided test corresponding
to the original form, both one-sided and two-sided de-
signs are presented for different genetic models.

Monte Carlo Simulations

Monte Carlo simulations were used to evaluate the
resulting conventional fixed-sample and sequential de-
signs. Within each replication, a sample of the calculated
sample size was created. For linkage designs, the cu-
mulative probabilities for sharing 0, 1, or 2 alleles IBD
are given by Risch (1990). By use of these cumulative

probabilities and uniformly distributed random num-
bers, each ASP was assigned to share 0, 1, or 2 alleles
IBD. The proportion of alleles shared IBD in the whole
sample was then determined to calculate the test statistic.
Similarly for the TDT, cumulative probabilities for all
possible family types in trios are presented by Knapp
(1999). These were used together with uniformly dis-
tributed random numbers to assign each trio to a family
type. From the frequencies of the different family types,
the proportion of heterozygous parents transmitting the
disease or any other allele was determined for the cal-
culation of the test statistic.

The number of replications was chosen to estimate all
parameters with a confidence of .95 at appropriate pre-
cision. Accordingly, the simulation of the power of .8
and of the significance level of .05 was estimated at a
precision of � .001; for the simulation of the signifi-
cance level of .0001, the precision was set to � .00001.
As a result, for designs with an overall , wea p .05
simulated 200,000 replications for each model under the
null hypothesis and 700,000 replications under the al-
ternative hypothesis. For designs with , wea p .0001
simulated 3,900,000 replications for each model under
the null hypothesis and, again, 700,000 replications un-
der the alternative hypothesis.

Results

Resulting Study Designs

The conventional fixed-sample design and the opti-
mized group sequential designs are presented in table 2
for the different maximal number of stages m. For both
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Table 5

Number of ASPs Nk for the One-Sided Mean Test for the kth Analysis in the Fixed-Sample Design and in Group Sequential Designs
with Two and Three Stages

RELATIVE

RISK

RATIOS

va

0 .05

Fixed Sample Two Stage Three Stage Fixed Sample Two Stage Three Stage

N1 N1 N2 N1 N2 N3 N1 N1 N2 N1 N2 N3

lSp1.2:
lOp1.2 1,488 1,016 1,542 854 1,193 1,560 2,273 1,552 2,356 1,304 1,822 2,384

lSp1.5:
lOp1.2 136 93 141 78 109 143 213 146 221 122 171 223
lOp1.5 364 249 378 209 292 382 561 383 581 322 450 588

lSp2:
lOp1.2 41 28 43 24 33 43 68 47 71 39 55 72
lOp1.5 64 44 66 37 51 67 103 70 107 59 83 108
lOp2 156 107 162 90 126 164 244 167 253 140 195 256

lSp3:
lOp1.2 16 11 17 9 13 17 30 20 31 17 24 31
lOp1.5 21 14 21 12 17 22 37 25 38 21 30 38
lOp2 32 22 33 18 26 33 54 37 55 31 43 56
lOp3 84 57 87 48 67 88 133 91 138 76 107 139

a v p recombination fraction between diallelic trait and fully informative marker locus. ; .a p .0001 b p .2

significance levels a, analysis times t1, t2, and t3 and
critical boundaries b1, b2, and b3 are given for all
analyses.

To illustrate the application, a two-sided test design
with three stages and an overall significance level of
.0001 is considered. The first interim analysis is per-
formed on 55.68% of the maximum sample size. The
test statistic of the first interim analysis, T(.5568), is
compared with the critical boundary b1. If T(.5568) is
14.1952 or !�4.1952, the null hypothesis is rejected for
significance. However, if T(.5568) falls within the critical
boundaries, the next 21.29% of the families are recruited
and genotyped. For the second interim analysis, the cu-
mulative test statistic on 76.97% of the maximum sam-
ple size, T(.7697), is then compared with the critical
boundary b2. If T(.7697) lies outside the critical bound-
aries of � 4.1281, the null hypothesis is rejected. Oth-
erwise, the remaining 23.03% of the sample are included
in the study, and the final analysis is performed using
the critical boundary b3. If the cumulative test statistic
T(1) lies outside the critical boundaries of , the�4.0283
null hypothesis is finally rejected; otherwise, it is
accepted.

Calculated Sample Sizes

To give an overview of the cost and savings of the
group sequential designs in comparison with fixed-sam-
ple designs, table 3 presents the calculated change in
required sample size. For each sequential design, the per-
cent increase or decrease in sample size over the fixed-
sample design is given.

The above example of a two-sided study design with

a maximum of three stages at is considereda p .0001
for illustration. If the null hypothesis is true, the group
sequential design requires, on average, 104.64% of the
sample size of the fixed-sample design. In contrast to
that, under the alternative hypothesis, the average sam-
ple size is reduced by 15.03% in the group sequential
designs, compared with that in the fixed-sample design.
In a given study, the sample size can even be reduced by
44.32%, as is shown in table 2.

Overall, it can be seen from table 3 that the cost, in
terms of sample size, under the null hypothesis is always
outweighed by at least twice the savings in mean sample
size under the alternative hypothesis. Even greater re-
ductions are expected in cases where the underlying ge-
netic effect exceeds the one assumed for the alternative
hypothesis. Both additional cost and savings rise with
the maximal number of stages in the design and with
the overall significance level in the given designs.

Sample sizes were computed for the one-sided mean
test for designs with a fixed sample and for group se-
quential designs with two and three stages. Varying ge-
netic effects in terms of relative risk ratios for parent-
offspring pairs and for sib pairs—lO and lS,
respectively—and for recombination fractions v were as-
sumed. Tables 4 and 5 present the necessary sample sizes
for all interim and final analyses for the mean test for
designs with overall significance levels of .05 and .0001,
respectively. Further sample sizes not listed in the tables
are available upon request.

Analogously, we calculated sample sizes for the con-
ventional fixed-sample design and for the optimized
group sequential designs with a maximum of two and
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Table 6

Number of Trios Nk for the Two-Sided TDT for the kth Analysis in the Fixed-Sample Design and in Group Sequential Designs with
Two and Three Stages

g AND p

MOIa

Multiplicative Additive

Fixed Sample Two Stage Three Stage Fixed Sample Two Stage Three Stage

N1 N1 N2 N1 N2 N3 N1 N1 N2 N1 N2 N3

:g p 1.5
p p .05 1,982 1,369 2,051 1,155 1,597 2,074 1,727 1,193 1,787 1,007 1,391 1,807
p p .1 1,098 758 1,136 640 885 1,149 852 589 882 497 687 892
p p .5 560 387 580 327 452 586 275 190 284 161 222 288
p p .8 1,098 758 1,136 640 885 1,149 494 341 511 288 398 516

:g p 2
p p .05 520 359 538 303 419 544 520 359 538 303 419 544
p p .1 302 209 312 176 244 316 302 209 312 176 244 316
p p .5 202 140 209 118 163 211 202 140 209 118 163 211
p p .8 454 314 470 265 366 475 454 314 470 265 366 475

:g p 3
p p .05 143 99 148 84 116 150 163 113 168 95 131 170
p p .1 90 63 93 53 73 94 113 79 117 66 91 118
p p .5 90 63 93 53 73 94 152 105 157 89 123 159
p p .8 237 164 245 139 191 248 419 289 433 244 338 438

:g p 4
p p .05 70 49 72 41 57 73 86 60 89 51 70 90
p p .1 47 33 49 28 38 49 68 47 70 40 55 71
p p .5 63 44 65 37 51 66 133 92 137 78 107 139
p p .8 180 125 187 106 146 189 402 278 416 235 325 421

a ; ; .a p .0001 b p .2 v p 0

three stages for the two-sided TDT with overall signif-
icance levels of and .0001 at a power of 80%.a p .05
The results for designs with are given in ta-a p .0001
bles 6 and 7 for varying genetic effects, allele frequencies,
and MOI. Again, further numbers are available from the
authors.

Simulated Type I– and Type II–Error Rates

Using the optimized designs with respective sample
sizes, Monte Carlo simulations were performed to verify
type I– and type II–error rates. Various sets of model
parameters, in terms of genetic effect and overall sig-
nificance level, with sample sizes of up to 1,500 ASPs
or trios in the fixed-sample design, were simulated. Ex-
cept for small sample sizes (!100 families), the asymp-
totic approximation leads to valid results, and simulated
and proposed error levels match well, regardless of the
maximal number of stages in the design (results not
shown). Furthermore, it should be noted that the as-
ymptotic approximation yields results for the newly pro-
posed group sequential designs similar to those for the
conventional fixed-sample study design.

Simulated Sample Sizes

Within each replicate of the Monte Carlo simulation,
we registered the sample size required to reach a con-

clusion in the group sequential designs. Thus, average
sample sizes needed in the group sequential designs were
calculated and compared with the sample sizes of the
fixed-sample designs. Across all simulated designs with
varying genetic effects, the simulated sample sizes match
remarkably well with those expected from table 3.

For illustration, we consider the one-sided mean test
at an overall significance level of . Figure 1a p .0001
displays the simulated sample sizes in the fixed-sample
design (gray line), in the two-stage group sequential de-
sign (solid black line), and in the three-stage (dotted
black line) group sequential design, plotted against the
sample size in the fixed-sample design.

Since the study designs were optimized with regard to
minimizing the average sample size under the alternative
hypothesis, sample sizes under the null hypothesis are
always greater than in the fixed-sample design. If, for
example, the fixed sample requires 800 ASPs, the two-
stage design needs ∼830 ASPs under the null hypothesis,
and the three-stage design ∼840 ASPs. In contrast to
that, the average sample sizes under the alternative hy-
pothesis are much smaller than in the fixed-sample de-
sign. In our example, the two-stage design requires only
∼700 ASPs, on average, and the three-stage design only
∼680 ASPs, compared to the 800 ASPs necessary for the
fixed-sample design under the alternative hypothesis.
Hence, there is also a visible difference between the two-
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Table 7

Number of Trios Nk for the Two-Sided TDT for the kth Analysis in the Fixed-Sample Design and in Group Sequential Designs with Two and
Three Stages

g AND p

MOIa

Recessive Dominant

Fixed Sample Two Stage Three Stage Fixed Sample Two Stage Three Stage

N1 N1 N2 N1 N2 N3 N1 N1 N2 N1 N2 N3

:g p 1.5
p p .05 756,206 521,997 782,498 440,569 609,077 791,307 2,299 1,588 2,379 1,340 1,852 2,405
p p .1 100,526 69,393 104,022 58,568 80,969 105,193 1,474 1,018 1,525 859 1,187 1,542
p p .5 1,814 1,253 1,877 1,058 1,462 1,899 2,710 1,871 2,804 1,579 2,183 2,836
p p .8 1,525 1,053 1,578 889 1,228 1,595 30,658 21,163 31,724 17,862 24,694 32,081

:g p 2
p p .05 189,524 130,826 196,114 110,418 152,650 198,321 630 435 652 367 508 659
p p .1 25,383 17,522 26,265 14,789 20,445 26,561 436 301 451 254 351 456
p p .5 560 387 580 327 452 586 1,098 758 1,136 640 885 1,149
p p .8 589 407 609 343 475 616 13,442 9,280 13,910 7,832 10,827 14,066

:g p 3
p p .05 47,618 32,871 49,274 27,743 38,354 49,828 187 129 193 110 151 196
p p .1 6,472 4,468 6,697 3,771 5,214 6,773 147 102 152 86 119 154
p p .5 202 140 209 118 163 211 560 387 580 327 452 586
p p .8 285 197 295 166 230 298 7,459 5,149 7,718 4,346 6,008 7,805

:g p 4
p p .05 21,269 14,682 22,009 12,392 17,132 22,257 97 68 101 57 79 102
p p .1 2,934 2,026 3,036 1,710 2,364 3,070 85 59 88 50 69 89
p p .5 122 85 127 72 99 128 421 291 436 246 340 441
p p .8 208 144 215 121 168 217 5,853 4,041 6,057 3,411 4,715 6,125

a ; ; .a p .0001 b p .2 v p 0

and the three-stage designs, with the three-stage design
leading to even lower average sample sizes under the
alternative hypothesis. Clearly, these savings outweigh
the cost in sample size under the null hypothesis.

Discussion

As is outlined in the Introduction, the requirement of
large sample sizes presents a major obstacle for genetic
studies of complex diseases. This is mainly due to pos-
sibly small genetic effects to be detected and to the nec-
essary adjustment of significance levels in genomewide
studies. In view of this problem, it has been emphasized
by Gu and Rao (2001) and Terwilliger and Göring
(2000) that the optimization of study designs plays a
critical role in successful mapping of complex diseases.

Accordingly, the aim of this article is to propose the
application of group sequential study designs that min-
imize the average sample size under the alternative hy-
pothesis. We present optimized designs for linkage and
association studies, using the mean test for ASPs and
the TDT for trios. Our simulation results have affirmed
that these designs lead to asymptotically valid type I–
and type II–error levels.

Most importantly, our calculations have revealed sig-
nificant reductions in average sample sizes under the

alternative hypothesis. The demonstrated savings affect
the amount of both phenotyping and genotyping of fam-
ilies necessary for the study. Hence, they lead to a tre-
mendous decrease in expected study cost. This enhances
the feasibility of large-scale studies in which multiple
hypotheses are tested and the significance levels are ad-
justed accordingly. Although our design does not elim-
inate the need for these adjustments, the impact of the
resulting increase in sample size is weakened. Further-
more, when sequential designs are used, results are ob-
tained faster than with a fixed-sample design. If statis-
tical analyses are performed sequentially, but the actual
sampling is not, it is possible that families can be saved
for later independent studies (Province 2000). Clearly,
these advantages make group sequential designs an ex-
tremely interesting tool for optimization of study de-
signs for the genetic background of complex diseases.

The presented reductions by group sequential designs
are expected to be even greater if strictly sequential
study designs like the sequential probability ratio test
(Wald 1947) are used instead of group sequential de-
signs. However, these are difficult to perform in practice,
since they require constant monitoring and statistical
analyses after the genotyping of each family.

The reader should note that the application of the
presented study designs is restricted by our specific
model assumptions. To be precise, the designs for the
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Figure 1 Simulated average sample sizes for the one-sided mean test under H0 and H1. , and ; number of replications pa p .0001 b p .2
3,900,000 under H0 and 700,000 under H1. Gray line, simulated average sample sizes in the fixed-sample design. Solid and dotted black lines,
simulated average sample sizes in the group sequential designs with two and three stages, respectively.

one-sided mean test require fully informative marker
loci. For less-than-fully-informative markers, adjust-
ments of the sample-size calculation have been derived
(e.g., Guo and Elston 2000). In the development of se-
quential designs for the two-sided TDT, we regarded
only the genetic models considered by Risch and Mer-
ikangas (1996) and by Camp (1997). Thus, it is assumed
that the marker locus is identical to the disease locus,
and developments are necessary to include different
models.

Several modifications or extensions to the presented
procedures might further improve the benefit of our
designs. First, we only consider an early stopping for
significance—that is, the study can be terminated after
an interim analysis only if the null hypothesis is rejected.
An interesting extension of this would be the inclusion
of the possibility of early stopping for futility. In that
case, the study can also be terminated after an interim
analysis if the null hypothesis is accepted because of a
low probability for a significant result, even if the study
was carried on. This extension might be especially help-
ful in genomewide analyses where an early stopping for
futility could occur for large genomic areas. Later stages
could then be performed only in genomic areas with
some probability of significant evidence. Our present
research efforts focus on the realization of these
possibilities.

Second, the tabulated designs might be modified to
better meet the practical demands of genetic applica-
tions. In most genetics labs, genotyping is performed
using 48-, 96-, or even 384-well plates, and it would
be more convenient if sample sizes to be genotyped at
a time were adjusted to these block sizes.

A final possible improvement is a combination of the
presented group sequential design with the sequential
designs proposed by Guo and Elston (2000; modified
by Ziegler et al. 2001). Instead of increasing the sample
size in later stages, they sequentially increase the marker
density in interesting chromosomal regions. A combined
strategy might be to increase both sample size and
marker density only for promising regions.

Possibly including future extensions, group sequential
designs have the power to greatly facilitate large-scale
genetic epidemiological studies. They have the advan-
tage of reducing study cost and time while simulta-
neously being easy to implement. Thus, they present an
eminently useful approach to optimization of study de-
signs on the genetics of complex diseases.
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